

SEMIPONT® 2

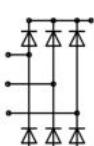
Power Bridge Rectifiers

SKD 100

Features

- Robust plastic case with screw terminals
- Large, isolated base plate
- Blocking voltage to 1600 V
- High surge currents
- Three phase bridge rectifier
- Easy chassis mounting
- UL recognized, file no. E 63 532

Typical Applications


- Three phase rectifiers for power supplies
- Input rectifiers for variable frequency drives
- Rectifiers for DC motor field supplies
- Battery charger rectifiers

1) Painted metal sheet of minimum

250 x 250 x 1 mm: $R_{th(c-a)} = 1,8 \text{ K/W}$

V_{RSM} V	V_{RRM}, V_{DRM} V	$I_D = 100 \text{ A}$ (full conduction) ($T_c = 93^\circ\text{C}$)
400	400	SKD 100/04
800	800	SKD 100/08
1200	1200	SKD 100/12
1400	1400	SKD 100/14
1600	1600	SKD 100/16

Symbol	Conditions	Values	Units
I_D	$T_c = 85^\circ\text{C}$ inductive load $T_a = 45^\circ\text{C}$, chassis ¹⁾ $T_a = 45^\circ\text{C}$; P13A/125 (P1A/120) $T_a = 35^\circ\text{C}$, P1A/120F (P1A/200F)	110 24 28 (54) 100 (120)	A A A A
I_{FSM}	$T_{vj} = 25^\circ\text{C}$; 10 ms $T_{vj} = 125^\circ\text{C}$; 10 ms	1150 1000	A A
i^2t	$T_{vj} = 25^\circ\text{C}$; 8,3 ... 10 ms $T_{vj} = 125^\circ\text{C}$; 8,3 ... 10 ms	6600 5000	A ² s A ² s
V_F $V_{(TO)}$	$T_{vj} = 25^\circ\text{C}$; $I_F = 150 \text{ A}$ $T_{vj} = 125^\circ\text{C}$	max. 1,35 max. 0,85	V V
r_T	$T_{vj} = 125^\circ\text{C}$	max. 5	$\text{m}\Omega$
I_{RD}	$T_{vj} = 25^\circ\text{C}$; $V_{DD} = V_{DRM}$; $V_{RD} = V_{RRM}$ $T_{vj} = 125^\circ\text{C}$, $V_{RD} = V_{RRM}$	max. 0,5 2	mA mA
$R_{th(j-c)}$	per diode	0,85	K/W
$R_{th(c-s)}$	total	0,14	K/W
T_{vj}	total	0,05	K/W
T_{stg}		- 40 ... + 125	°C
T_{stg}		- 40 ... + 125	°C
V_{isol}	a. c. 50 Hz; r.m.s.; 1 s / 1 min.	3600 (3000)	V
M_s	to heatsink	5 ± 15 %	Nm
M_t	to terminals	5 ± 15 %	Nm
m		165	g
Case		G 18	

SKD

SKD 100

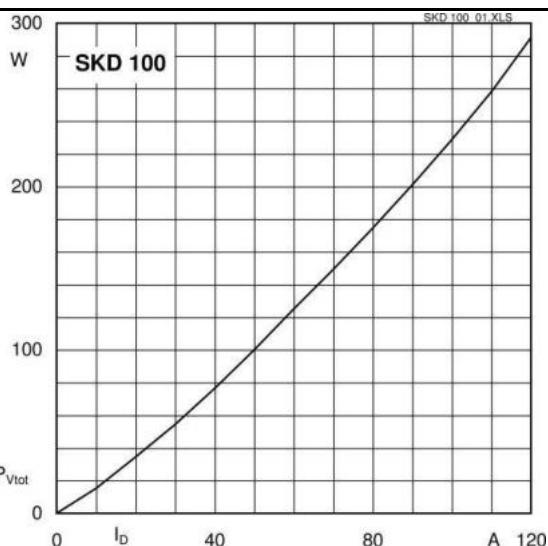


Fig. 3L Power dissipation vs. output current

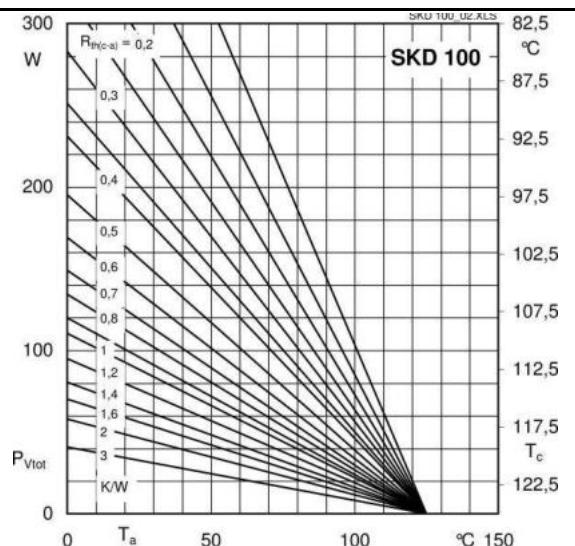


Fig. 3R Power dissipation vs. case temperature

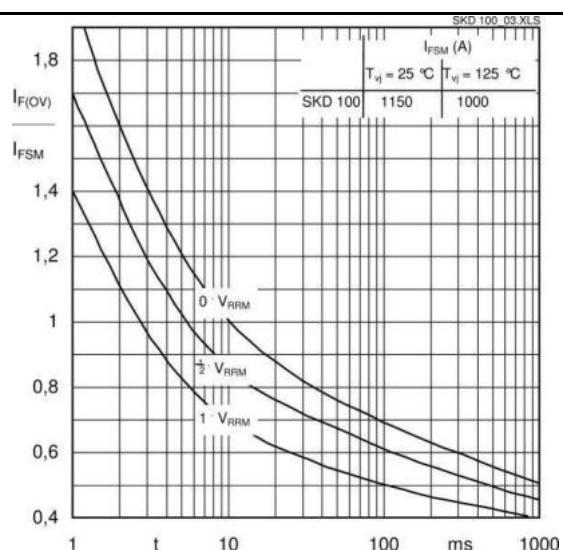


Fig. 6 Surge overload characteristics vs. time

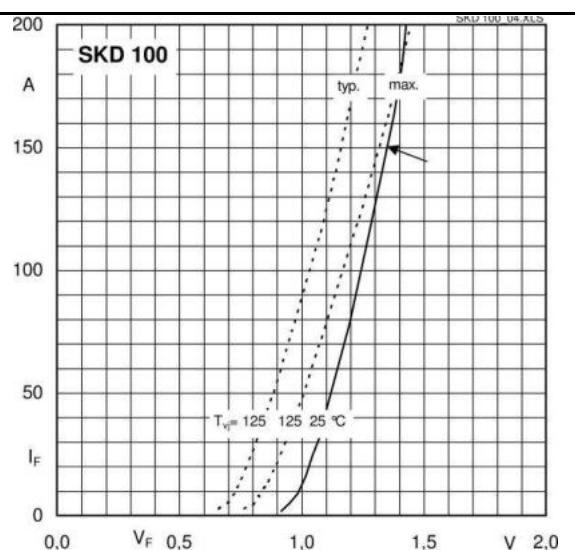


Fig. 9 Forward characteristics of a diode arm

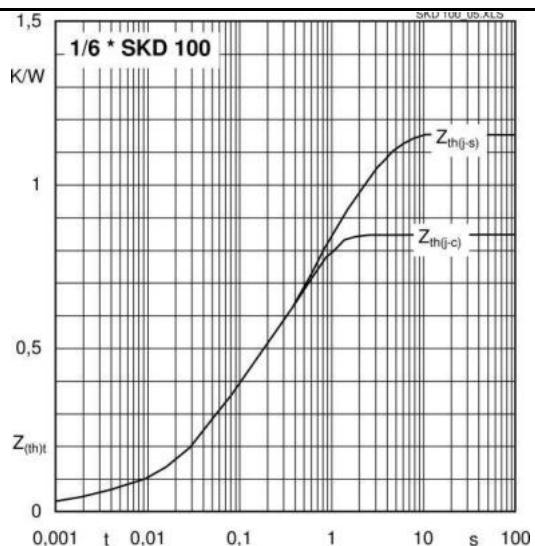
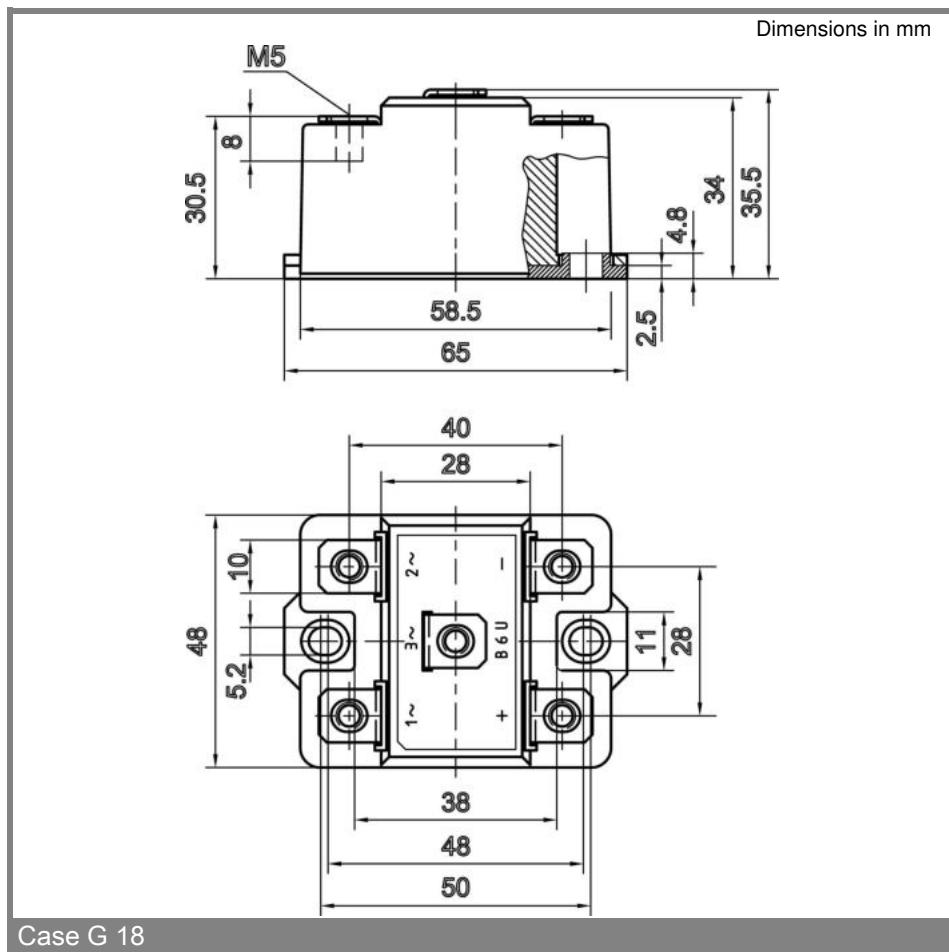



Fig. 12 Transient thermal impedance vs. time

Case G 18

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.